

Callisto Software

Callisto 3D is software created and developed by the engineers at Occhio. Used in conjunction with any Occhio instrument, this software receives and deciphers the vast amounts of digital information which is supplied during microscopy analyses. Certified to conform with ISO 9276-6 Norms, this software uses powerful algorithms to interpret, characterize, and sort each particle independently. With over 60 evaluation tools, Callisto 3D allows the user to thoroughly review analysis results for thousands of different applications. Though inclusive, this software remains user friendly and intuitive with an easy to use navigation wheel and descriptions which appear when the cursor is hovered over a button.

Annex 3: Parameter definitions

Names and definitions are compliant with ISO 9576-6

Weight Factors: 6

Parameter	Other name	Sym- bol	Definition	Formula
Number				
Volume		V	The volume of the particle volume model.	
Equivalent Volume			The volume of the sphere having the same projec- tion area of the particle.	
Projection area		Α	The projection area of the particle.	
Surface area		S	The external surface area of the particle volume model.	
Area of the convex hull			The area of the smallest convex hull that contains the projection of the particle	

Size Parameters: 35

Parameter	Other name	Sym-	Definition	Formula
		bol		
Perimeter		Р	The length of the particle perimeter.	
Cauchy-Crofton perimeter		P _{cc}	The length of the particle perimeter computed by	
			Cauchy-Crofton formula.	
Perimeter of the convex hull		Pc	The perimeter length of the convex hull (envelope)	
			that bounding the particle.	

Volume-equivalent diameter		Xv	The diameter of a sphere having the same volume as the particle volume model.	$\sqrt[3]{\frac{6V}{\pi}}$
Area-equivalent diameter	Equivalent circle diameter, ECD	X _A	The diameter of a sphere having the same projection area as particle.	$\sqrt[2]{\frac{4A}{\pi}}$
Surface-equivalent diameter		Xs	The diameter of a sphere having the same surface area as the particle.	$\sqrt[2]{\frac{S}{\pi}}$
Perimeter-equivalent diame- ter		X _P	The diameter of a circle having the same perimeter as the projection area of the particle.	$\frac{P}{\pi}$
Cauchy-Crofton perimeter- equivalent diameter		X _{Pcc}	The diameter of a circle having the same Cauchy- Crofton perimeter as the projection area of the par- ticle.	$\frac{P_{cc}}{\pi}$
Inner diameter	diameter Maxi- mum inscribed circle diameter	d _{imax}	The diameter of biggest circle inscribed into the pro- jection area of the particle.	
Legendre ellipse maximum		X _{LMax}	The major axis of an ellipse with its center at the particle's centroid and with the same geometrical moments, up to the second order, as the projection area of the particle.	
Legendre ellipse minimum		XLMin	The minor axis of an ellipse with its center at the particle's centroid and with the same geometrical moments, up to the second order, as the projection area of the particle.	
Feret diameter maximum	Length of parti- cle	X FMax	The maximum distance between parallel tangents to the projection area of the particle.	

Feret diameter minimum	Breadth of parti- cle	X FMin	The minimum distance between parallel tangents to the projection area of the particle.	
Feret conjugate	Feret length	X _{LF}	The Feret diameter (i.e. the distance between paral- lel tangents to the projection area of the particle) perpendicular to Feret diameter minimum.	
Angle-average Feret diame- ter		\overline{x}_{F}	The mean Feret diameter.	
Geodesic length		X LG	A better approximation of the particle length and	$A = x_E . x_{LG}$
Thickness		XE	width for very long and concave particle (fibers)	$P=2(x_E+x_{LG})$
Minimum circumscribed cir- cle diameter		d _{cmin}	The smallest circle containing the projection area of the particle.	
Erosion number		ω_1	The number of erosions necessary to make the pro- jection area of the particle disappears completely.	
Convex hull erosion number		ω2	The number of erosions necessary to make the area of the convex hull of the projection area of the parti- cle disappears completely.	
Fractal dimension		D _F	The relationship between the length of the perime- ter $[P(\lambda)]$ and the length of the step $[\lambda]$ is considered as linear on log-log plot. The fractal dimension pro- vides the slope of this linear relationship.	$Log P(\lambda) = (1 - D_F) \log \lambda + \log b$
Mean diameter			The double of the mean distance between gravity center of the projection of the particle and each point of the outline of the projection of the particle.	
Inertia box width			The width of the smallest box that contains the pro- jection of particle with the same principal directions that the projection of the particle.	

Inertia box height	The height of the smallest box that contains the pro-
	jection of particle with the same principal directions
	that the projection of the particle.
Skeleton length	The length of the convex hull outline minus the big-
	gest convex hull segment.
Specific Area	The ratio between the external surface of the parti-
	cle volume model and the volume of this model
Inner threshold area	The area of the inner part of the projection area that
	are segmented by inner threshold parameters
Inertia-box depth	Only for 3D instrument: Side Inertia box width
Inner diameter depth	Only for 3D instrument: Side inner diameter
Side Feret minimum	Only for 3D instrument: Side Feret minimum
Brownian diameter	Only for Brownian motion instrument
Wire Y	Only for SieveCal instrument: The size of the open-
	ing wire as defined in ASTME11-13
Wire X	Only for SieveCal instrument: The size of the open-
	ing wire as defined in ASTME11-13
Opening Y	Only for SieveCal instrument: The size of the open-
	ing as defined in ASTME11-13
Opening X	Only for SieveCal instrument: The size of the open-
	ing as defined in ASTME11-13

Shape Parameters: 52

Parameter Other name	Sym- bol	Definition	Formula
----------------------	-------------	------------	---------

Ellipse ratio	Elliptical shape		The ratio of Legendre ellipse minimum to Legendre ellipse maximum	$\frac{x_{Lmin}}{x_{Lmin}}$
Aspect ratio			The ratio of Feret minimum to Feret maximum.	$\frac{x_{Fmin}}{x_{-}}$
Elongation	Eccentricity		The ratio of thickness to geodesic length.	$\frac{x_E}{x_E}$
Straightness			The ratio of Feret maximum to geodesic length.	$\frac{x_{Fmax}}{x_{F}}$
Curl			The ratio of geodesic length to Feret maximum.	$\frac{x_{LG}}{x_{Emax}}$
Irregularity	Modification ra- tio		The ratio of maximum inscribed circle diameter to minimum circumscribed circle diameter.	$\frac{d_{imax}}{d_{cmin}}$
Compactness			The degree to which the projection area of the parti- cle is similar to a circle. The ration of the area-equiv- alent diameter to Feret diameter maximum.	$\frac{x_A}{x_{Fmax}}$
Roundness		R _n	Similar to compactness but less robust (see ISO9276- 6)	$\frac{x_A^2}{x_{Fmax}^2}$
Extent	Bulkiness		The ratio of projection area to the product of Feret diameter maximum by Feret diameter minimum.	$\frac{A}{x_{Fmax} x_{Fmin}}$
Box ratio			The ratio of projection area to the Feret box area. Where the Feret box area is the product of Feret di- ameter minimum by Feret diameter conjugate.	$\frac{A}{x_{Fmin}x_{LF}}$
Wadell's sphericity		Ψ		$\left(\frac{x_V}{x_S}\right)^2$
Wadell's roundness		R _W		$\frac{\sum d_i}{n_i d_{imax}}$
Form factor	FF			$\frac{4\pi A}{P^2}$

Circularity	C	The degree to which the projection area of the parti-	$\frac{x_A}{x_A}$
		cle is similar to a circle, considering the smoothness	x_P
		of the perimeter.	
Crofton Circularity		It's the circularity computed with Crofton correction	
Solidity		A measure of the overall concavity of the projection	Α
		area of the particle.	$\overline{A_{c}}$
Global surface concavity in-	CI	A measure of the overall concavity of the projection	$A_c - A$
dex		area of the particle.	A
Concavity		A measure of the overall concavity of the projection	$A_C - A$
		area of the particle.	A_{C}
Convexity			P_{C}
			P
Crofton Convexity		It's the convexity computed with Crofton correction	
Average concavity	$\psi_{\scriptscriptstyle FP}$		\overline{x}_F
			χ_P
Particle robustness	Ω_1		$2\omega_1$
			$\sqrt[2]{A}$
Largest concavity index	Ω_2		$2\omega_2$
			$\sqrt[2]{A}$
Concavity/robustness ratio	Ω_3	The ratio of particle robustness to the Largest con-	ω_2
		cavity index.	$\boldsymbol{\omega}_1$
Occhio bluntness			
Occhio abrasivity			
Occhio elongation		One minus the ratio Inertia box width to Inertia box	
		height	
Occhio roughness xx%		The ratio of smooth reference to the particle projec-	
		tion area. The smooth reference is defined by	

	inscribed circles tangent to each point of the particle projection outline with a radius greater than XX% of the maximum inscribed circle.
Mean luminance	Mean value of the luminance of pixel inside the pro- jection area of the particle
RSD luminance	Mean value of the luminance of pixel inside the pro- jection area of the particle
Mean red	Only for color instrument: Mean value of the red channel of pixel inside the projection area of the particle
RSD red	Only for color instrument: RSD value of the red channel of pixel inside the projection area of the particle
Mean green	Only for color instrument: Mean value of the green channel of pixel inside the projection area of the particle
RSD green	Only for color instrument: RSD value of the green channel of pixel inside the projection area of the particle
Mean blue	Only for color instrument: Mean value of the blue channel of pixel inside the projection area of the particle
RSD blue	Only for color instrument: RSD value of the blue channel of pixel inside the projection area of the particle

Mean inner red	Only for color capable instruments: Mean value of the red channel of pixel inside the projection area of the particle that are segmented by inner threshold parameters	
Mean inner green	Only for color instrument: Mean value of the green channel of pixel inside the projection area of the particle that are segmented by inner threshold pa- rameters	
Mean inner blue	Only for color instrument: Mean value of the blue channel of pixel inside the projection area of the particle that are segmented by inner threshold pa- rameters	
Side aspect ratio	Only for 3D Instrument: the aspect ratio measured with the side camera.	
Side Occhio elongation	Only for 3D Instrument: the Occhio elongation measured with the side camera.	
Side solidity	Only for 3D Instrument: the aspect ratio measured with the side camera.	
Occhio flattening	Only for 3D Instrument: Ratio of the Inertia-box depth to Inertia-box width	